Abstract

A singularity is described that creates a forward time loss of determinacy in a two-timescale system, in the limit where the timescale separation is large. We describe how the situation can arise in a dynamical system of two fast variables and three slow variables or parameters, with weakly coupling between the fast variables. A wide set of initial conditions enters the [Formula: see text]-neighborhood of the singularity, and explodes back out of it to fill a large region of phase space, all in finite time. The scenario has particular significance in the application to piecewise-smooth systems, where it arises in the blow up of dynamics at a discontinuity and is followed by abrupt recollapse of solutions to “hide” the loss of determinacy, and yet leave behind a remnant of it in the global dynamics. This constitutes a generalization of a “micro-slip” phenomenon found recently in spring-coupled blocks, whereby coupled oscillators undergo unpredictable stick-slip-stick sequences instigated by a higher codimension form of the singularity. The indeterminacy is localized to brief slips events, but remains evident in the indeterminate sequencing of near-simultaneous slips of multiple blocks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.