Abstract
Two escape mutants (R 10c/1 and R 10c/10) of the human respiratory syncytial (RS) virus Long strain were selected after serial passage in the presence of monoclonal antibody c793 directed against the G glycoprotein. This antibody recognizes an epitope which is shared by all viruses of the two antigenic subgroups in which human RS virus isolates have been subdivided. The mutant viruses had lost most of the G protein conserved and subgroup-specific epitopes but maintained the strain-variable epitopes. The two mutants had 10 or 11 nucleotide changes in the central region of the G protein gene when compared to the Long sequence, and almost all of those changes were different between the two mutants. The majority of the nucleotide changes involved A-G transitions (U-C in the positive sense) that resulted in amino acid substitutions. Each mutant had a total of six amino acid changes, and the changes were different between the two mutants. Unexpectedly, each mutant lost one of the four conserved cysteines of the G protein, and a different cysteine (Cys 182 or 186) was lost in each mutant. They are, in fact, the first reported RS viruses with only three cysteines in the G protein ectodomain. The genetic mechanism that generated the escape mutants and its relevance for the natural history of RS virus are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.