Abstract
Identifying predictors for individuals vulnerable to the adverse effects of traumatic brain injury (TBI) remains an ongoing research pursuit. This is especially important for patients with mild TBI (mTBI), whose condition is often overlooked. TBI severity in humans is determined by several criteria, including the duration of loss of consciousness (LOC): LOC < 30 min for mTBI and LOC > 30 min for moderate-to-severe TBI. However, in experimental TBI models, there is no standard guideline for assessing the severity of TBI. One commonly used metric is the loss of righting reflex (LRR), a rodent analogue of LOC. However, LRR is highly variable across studies and rodents, making strict numeric cutoffs difficult to define. Instead, LRR may best be used as predictor of symptom development and severity. This review summarizes the current knowledge on the associations between LOC and outcomes after mTBI in humans and between LRR and outcomes after experimental TBI in rodents. In clinical literature, LOC following mTBI is associated with various adverse outcome measures, such as cognitive and memory deficits; psychiatric disorders; physical symptoms; and brain abnormalities associated with the aforementioned impairments. In preclinical studies, longer LRR following TBI is associated with greater motor and sensorimotor impairments; cognitive and memory impairments; peripheral and neuropathology; and physiologic abnormalities. Because of the similarities in associations, LRR in experimental TBI models may serve as a useful proxy for LOC to contribute to the ongoing development of evidence-based personalized treatment strategies for patients sustaining head trauma. Analysis of highly symptomatic rodents may shed light on the biological underpinnings of symptom development after rodent TBI, which may translate to therapeutic targets for mTBI in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.