Abstract
Cdk5, which plays a role in the development and progression of many human cancers, localizes in the mitochondria, a key determinant of apoptotic cell death. Cdk5 is upregulated in breast cancer cells but it was shown that Cdk5 loss increases chemotherapy-induced apoptosis. However, the molecular mechanism by which Cdk5 loss promotes cell death remains unclear. Here, we investigate the possibility that Cdk5 loss activates the intrinsic apoptotic pathway in breast cancer cells. We demonstrate that Cdk5-deficient breast cancer cells exhibit increased mitochondrial depolarization, mitochondrial ROS levels, and mitochondrial fragmentation that is associated with an increase in both intracellular Ca2+ level and calcineurin activity, and DRP1 S637 dephosphorylation. These events accompany increased apoptosis, indicating that Cdk5 loss promotes mitochondria-mediated apoptosis. To define this apoptotic pathway, we utilized various inhibitors of mitochondrial function. Apoptosis is completely prevented by mPTP inhibition, almost fully inhibited by blocking ROS and unaffected by inhibition of mitochondrial fission, suggesting that apoptosis in breast cancer cells due to Cdk5 loss occurs via a novel mPTP-dependent mechanism that acts primarily through ROS increase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.