Abstract

The disruption of nucleus accumbens (NAc) function impacts mood and learning behavior in α-Synucleinopathy, in which microglial synaptic pruning plays a pivotal role in modulating the neuropathologic progression. Available literature documents that in microglia, the activation of cannabinoid receptor 2 (CB2R) decreases inflammation, but it remains obscured regarding the roles of CB2R in microglia-mediated synaptic pruning in the NAc during the neuropathological progression of α-Synucleinopathy. We adopted the fibrillar α-Synuclein (α-Syn) treatment to characterize the effect of genetic CB2R deletion on microglial function and the signaling pathway. CB2R knockout (CB2−/−) mice and wild-type (CB2+/+) mice were divided into the α-Syn or saline treatment groups. Biochemical and microscopy approaches, including immunofluorescence, real-time PCR, and western blotting, were employed to assess the changes in homeostasis of synaptic pruning in NAc under the α-Syn-induced microglia. Moreover, the underlying mechanisms of CB2R on α-Syn induced microglial activity was assessed in vitro. After the injection of α-Syn into the NAc, distinct microglial morphological changes and M1 phenotype transformation were observed between CB2−/− and CB2+/+ mice. Meanwhile, after the α-Syn treatment, CB2−/− mice showed an increased upregulation of CD68 protein and IL-1β mRNA but decreased brain-derived neurotrophic factor (BDNF) and TGF-β mRNA compared with CB2+/+ mice. Additionally, CB2−/− microglia after the treatment showed a highly enriched complement 3a receptor (C3aR) producing excessive pruning of cholinergic synapses but less engulfment of dopaminergic synapses. Mechanistically, the loss of CB2R function in the α-Syn stimulation triggered c-Fos activation in microglia, but not in neurons. Further inhibition of microglial CB2R functions under α-Syn stimulation activated the phosphorylated cAMP-response element-binding protein (pCREB)-c-Fos, which was closely related to the C3aR upregulation. Our results reveal a critical and mechanistic role of CB2R in altering the microglial function and its value in the homeostasis of synaptic circuits in the NAc under the α-Syn pathology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call