Abstract

In electrospray ionization tandem mass spectrometry of protonated 1-benzoylamines (1-benzoylpiperadine, 1-benzoylmorpholine, and 1-benzoyl-4-methylpiperazine), the dominant fragmentation pathway was amide bond cleavage to form benzoyl cation and neutral amine. Meanwhile, in their fragmentations, an interesting loss of benzaldehyde (106Da) was observed and identified to derive from hydride transfer reaction between the benzoyl cation and amine. A stepwise mechanism for loss of 106Da (benzene and CO) could be excluded with the aid of deuterium labeling experiment. Theoretical calculations indicated that hydride transfers from amines (piperadine, morpholine, and 1-methylpiperazine) to benzoyl cation were thermodynamically permitted, and 1-methylpiperazine was the best hydride donor among the 3 amines. The mass spectrometric experimental results were consistent with the computational results. The relative abundance of the iminium cation (relative to the benzoyl cation) in the fragmentation of protonated 1-benzoyl-4-methylpiperazine was higher than that in the fragmentation of the other 2 protonated 1-benzoylamines. By comparing the fragmentations of protonated 1-benzyl-4-methylpiperazine and protonated 1-benzoyl-4-methylpiperazine and the energetics of their hydride transfer reactions, this study revealed that benzoyl cation was a hydride acceptor in the gas phase, but which was weaker than benzyl cation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.