Abstract

Individuals with mutations in CHD8 present with gastrointestinal complaints, yet the underlying mechanisms are understudied. Here, using a stable constitutive chd8 mutant zebrafish model, we found that the loss of chd8 leads to a reduced number of vagal neural crest cells (NCCs), enteric neural and glial progenitors, emigrating from the neural tube, and that their early migration capability was altered. At later stages, although the intestinal colonization by NCCs was complete, we found the decreased numbers of both serotonin-producing enterochromaffin cells and NCC-derived serotonergic neurons, suggesting an intestinal hyposerotonemia in the absence of chd8 Furthermore, transcriptomic analyses revealed an altered expression of key receptors and enzymes in serotonin and acetylcholine signaling pathways. The tissue examination of chd8 mutants revealed a thinner intestinal epithelium accompanied by an accumulation of neutrophils and the decreased numbers of goblet cells and eosinophils. Last, single-cell sequencing of whole intestines showed a global disruption of the immune balance with a perturbed expression of inflammatory interleukins and changes in immune cell clusters. Our findings propose a causal developmental link between chd8, NCC development, intestinal homeostasis, and autism-associated gastrointestinal complaints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.