Abstract

Multiple nicotinic receptors are present in rodent and monkey striatum, with a selective localization of alpha-conotoxinMII-sensitive sites in the striatum and preferential declines in their numbers after nigrostriatal damage. Here we report the presence of 125I-alpha-conotoxinMII and alpha-conotoxinMII-sensitive 125I-epibatidine nicotinic receptors in human control and Parkinson's disease striatum. 125I-alpha-ConotoxinMII bound to control striatum with the characteristics of a nicotinic receptor ligand although the number of sites was approximately fivefold lower than in rodent and monkey. Competition analyses of alpha-conotoxinMII with 125I-epibatidine showed that toxin-sensitive sites comprised approximately 15% of nicotinic receptors in human striatum. In Parkinson's disease caudate, there was a approximately 50% decline in 125I-alpha-conotoxinMII sites with a similar decline in the dopamine transporter. In putamen, there were substantially greater losses of the dopamine transporter (80-90%) but only 50-60% decreases in 125I-alpha-conotoxinMII sites with corresponding declines in alpha-conotoxinMII-sensitive 125I-epibatidine sites, 125I-epibatidine (multiple) sites and 125I-A85380 (beta2-containing) nicotinic receptors. The greater loss of the transporter compared with nicotinic sites suggests that only a subpopulation of nicotinic receptors is located pre-synaptically on striatal dopaminergic neurons in man. Correlation analyses between changes in nicotinic receptors and the dopamine transporter in Parkinson's disease striatum suggest that alpha-conotoxinMII-sensitive 125I-epibatidine sites (low-affinity sites), 125I-A85380 and 125I-epibatidine sites are localized in part to dopaminergic terminals. In summary, these results show that alpha-conotoxinMII-sensitive sites are present in human striatum and that there are high- and low-affinity subtypes which are both decreased in Parkinson's disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.