Abstract

The transmembrane protease ADAM9 is frequently upregulated in human cancers, and it promotes tumour progression in mice. In vitro, ADAM9 regulates cancer cell adhesion and migration by interacting with integrins. However, how ADAM9 modulates integrin functions is not known. We here show that ADAM9 knockdown increases β1 integrin levels through mechanisms that are independent of its protease activity. In ADAM9-silenced cells, adhesion to collagen and fibronectin is reduced, suggesting an altered function of the accumulated integrins. Mechanistically, ADAM9 co-immunoprecipitates with β1 integrin, and both internalization and subsequent degradation of β1 integrin are significantly decreased in ADAM9-silenced cells, with no effect on β1 integrin recycling. Accordingly, the formation of focal adhesions and actin stress fibres in ADAM9-silenced cells is altered, possibly explaining the reduction in cell adhesion and migration in these cells. Taken together, our data provide mechanistic insight into the ADAM9-integrin interaction, demonstrating that ADAM9 regulates β1 integrin endocytosis. Moreover, our findings indicate that the reduced migration of ADAM9-silenced cells is, at least in part, caused by the accumulation and altered activity of β1 integrin at the cell surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.