Abstract

In a striking similarity to plant chloroplasts, the cyanobacterium Anabaena displays very low catalase activity, but expresses several peroxiredoxins (Prxs), including the typical 2-Cys-Prx (annotated as Alr4641), that detoxify H2 O2 . Due to the presence of multiple Prxs, the precise contribution of Alr4641 to the oxidative stress response of Anabaena is not well-defined. To unambiguously assess its in vivo function, the Alr4641 protein was knocked down using the CRISPRi approach in Anabaena PCC 7120. The knockdown strain (An-KD4641), which showed over 85% decrease in the content of Alr4641, was viable, but grew slower than the control strain (An-dCas9). An-KD4641 showed elevated levels of reactive oxygen speciesand the expression of several redox-responsive genes was analogous to that of An-dCas9 subjected to oxidative stress. The knockdown strain displayed reduced filament size, altered thylakoid ultrastructure, a marked drop in the ratio of phycocyanin to chlorophyll a and decreased photosynthetic parameters compared to An-dCas9. In comparison to the control strain, exposure to H2 O2 had a more severe effect on the photosynthetic parameters or survival of An-KD4641. Thus, in the absence of adequate catalase activity, 2-Cys-Prx appears to be the principal Prx responsible for maintaining redox homoeostasis in diverse photosynthetic systems ranging from chloroplasts to cyanobacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call