Abstract

Optical waveguides directly written in fused silica using a femtosecond laser were characterized from 350 to 1750 nm to gain insight on the waveguide's loss mechanisms and their dependence on processing parameters, such as pulse energy, scan velocity, and annealing temperature. Two major loss mechanisms were identified. In the range of parameters tested, high pulse energy was seen to improve coupling losses at long wavelengths, while high scan velocity has a negative effect in both Rayleigh scattering and coupling losses at long wavelengths. Thermal annealing of the waveguides demonstrated an improvement of the Rayleigh scattering at a cost of higher coupling losses at long wavelengths. Wavelength independent Mie scattering was also observed, evolving negatively with pulse energy. A minimum Rayleigh scattering coefficient of ≍0.5 dB⋅cm−1⋅μm4 (≍0.08 dB⋅cm−1⋅μm4 for thermally treated waveguides) together with a Mie scattering coefficient of ≍0.2–0.65 dB/cm are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.