Abstract

One of the most important issues in kesterite Cu2ZnSnS4 (CZTS)-based thin film solar cells is low open circuit voltage, which is mainly related to loss mechanisms that take place in both CZTS bulk material and CdS/CZTS interface. A device model for CZTS/CdS solar cell which takes into account loss mechanisms influence on solar cell performance is presented. The simulation results showed that our model is able to reproduce experimental observations reported for CZTS/CdS-based solar cells with the highest conversion efficiencies, measured under room temperature and AM1.5 intensity. The comparison of simulation results to experimental observations demonstrated that among the different loss mechanisms, trap-assisted tunneling losses are the major hurdle to boost open circuit voltage. Under this loss mechanism, a solar cell efficiency enhancement up to 10.2% with CdS donor concentration decrease was reached. Finally, the possible path toward a further solar cell efficiency improvement is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call