Abstract

In organic photovoltaics (OPV), perylene diimide (PDI) acceptor materials are promising candidates to replace the commonly used, but more expensive fullerene derivatives. The use of alternative acceptor materials however implies new design guidelines for OPV devices. It is therefore important to understand the underlying photophysical processes, which either lead to charge generation or geminate recombination. In this contribution, we investigate radiative losses in a series of OPV materials based on two polymers, P3HT and PTB7, respectively, which were blended with different PDI derivatives. Our time-resolved photoluminescence measurements (TRPL) allow us to identify different loss mechanisms by the decay characteristics of several excitonic species. In particular, we find evidence for unfavorable morphologies in terms of large-scale pure domains, inhibited exciton transport and incomplete charge transfer. Furthermore, in one of the P3HT-blends, an interfacial emissive charge transfer (CT) state with strong trapping character is identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.