Abstract

Nonlinearity-induced asymmetric transport (AT) can be utilized for on-chip implementation of nonreciprocal devices that do not require odd-vector biasing. This scheme, however, is subject to a fundamental bound dictating that the maximum transmittance asymmetry is inversely proportional to the asymmetry intensity range (AIR) over which AT occurs. Contrary to the conventional wisdom, we show that the implementation of losses can lead to an increase of the AIR without deteriorating the AT. We develop a general theory that provides a new upper bound for AT in nonlinear complex systems and highlights the importance of their structural complexity and of losses. Our predictions are confirmed numerically and experimentally using a microwave complex network of coaxial cables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.