Abstract
Parity-time (PT)-symmetry brings various opportunities for electromagnetic field manipulation and light-matter interaction, such as modification of spontaneous emission. However, previous works mainly focused on the behavior of spontaneous emission at exceptional points or in the PT-symmetry situation. Here, we theoretically demonstrate loss-induced Purcell enhancement in PT-broken whispering gallery microcavities. In the PT-broken phase, one of the supermodes decays slowly thereby playing a leading role in spontaneous emission. As the loss increases, the quality factor of this supermode is higher and the mode volume is smaller, so that the Purcell factors will be larger if the emitter is placed near the lossless cavity. Our findings indicate that loss can enhance the interaction between light and matter, which could be applied to single photon emission, non-Hermitian photonic devices, etc.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.