Abstract

Non-Hermitian systems with complex-valued energy spectra provide an extraordinary platform for manipulating unconventional dynamics of light. Here, we demonstrate the localization of light in an instantaneously reconfigurable non-Hermitian honeycomb photonic lattice that is established in a coherently prepared atomic system. One set of the sublattices is optically modulated to introduce the absorptive difference between neighboring lattice sites, where the Dirac points in reciprocal space are extended into dispersionless local flat bands, with two shared eigenstates: low-loss (high-loss) one with fields confined at sublattice B (A). When these local flat bands are broad enough due to larger loss difference, the incident beam with its tangential wave vector being at the K point in reciprocal space is effectively localized at sublattice B with weaker absorption, namely, the commonly seen power exchange between adjacent channels in photonic lattices is effectively prohibited. The current work unlocks a new capability from non-Hermitian two-dimensional photonic lattices and provides an alternative route for engineering tunable local flat bands in photonic structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.