Abstract

Nowadays, heat dissipation in electronic devices is one of the serious issues to be resolved in energy and environmental terms. Piezoelectric materials are being utilized in many electronic devices, yet the roadblock toward further miniaturization of piezoelectric devices was identified as heat dissipation. Three types of losses (dielectric, elastic, and piezoelectric) are known to be related to the heat dissipation mechanism of piezoelectric materials, therefore obtaining accurate values of the loss factors is essential for minimizing the heat dissipation of piezoelectric devices. The purpose of this review is to introduce several loss determination techniques for piezoelectric materials. The review starts with brief discussions of the loss factors and of the importance of piezoelectric loss that is related to the antiresonance frequency. Then, the review covers the methods developed by our research group, including High Power Piezoelectric Characterization Systems (HiPoCSTM), the crystallographic orientation method and the partial electrode method, as well as other methods such as the pulse-echo method and computer-based approaches. The review continues with a discussion of piezoelectric device modeling (analytical solution and equivalent circuits) that considers loss factors. Finally, the review provides concluding remarks for addressing current issues and suggesting possible solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call