Abstract

ABSTRACT A star wandering close enough to a massive black hole can be ripped apart by the tidal forces of the black hole. The advent of wide-field surveys at many wavelengths has quickly increased the number of tidal disruption events (TDEs) observed, and has revealed that (i) observed TDE rates are lower than theoretical predictions and (ii) E+A galaxies are significantly overrepresented. This overrepresentation further worsens the tension between observed and theoretically predicted TDEs for non-E+A galaxies. Classical loss cone theory focuses on the cumulative effect of many weak scatterings. However, a strong scattering can remove a star from the distribution before it can get tidally disrupted. Most stars undergoing TDEs come from within the radius of influence, the densest environments of the Universe. In such environments, close encounters rare elsewhere become non-negligible. We revise the standard loss cone theory to take into account classical two-body interactions as well as strong scattering, collisions, tidal captures, and study under which conditions close encounters can shield the loss cone. We (i) analytically derive the impact of strong scattering and other close encounters, (ii) compute time-dependent loss cone dynamics including both weak and strong encounters, and (iii) derive analytical solutions to the Fokker–Planck equation with strong scattering. We find that (i) TDE rates can be reduced to up to an order of magnitude and (ii) strong shielding preferentially reduces deeply plunging stars. We also show that stellar overdensities, one possible explanation for the E + A preference, can fail to increase TDE rates when taking into account strong scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call