Abstract

Abstract Variable inlet guide vanes (VIGV) are the main control element to adjust the flow rate of industrial centrifugal compressors by customized pre-swirl in the inlet plane of the impeller. The efficient working range of VIGVs is however restricted due to open flow separation occurring at critical stagger angles. In order to overcome the narrow limitations of current blade geometries and to enhance the operating range of the compressor, split blades consisting of a separate front and tail blade segment proved to be particularly promising in previous linear-cascade measurements. Each blade segment is thereby individually staggered. This enables a gradual flow deflection along the chord length. Secondary flow losses, however, were not considered in the previous investigations with linear cascades. To highlight the potential of the split blade concept under more application-oriented conditions including all relevant flow effects, highly resolved field measurements were conducted in the wake of annular VIGVs. Four different blade configurations, a customary reference case and three variations of the split blade with full, partial and missing sealing in the gap between the segments were assessed using five-hole probe measurements. By investigating a wide range of stagger angles, the coverage of the full low-loss working range of the VIGV could be ensured. Especially, the fully sealed split blade configuration proved its capacity to extend the efficient operational range significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.