Abstract
III-V semiconductors grown on silicon recently appeared as a promising platform to decrease the cost of photonic components and circuits. For nonlinear optics, specific features of the III-V crystal arising from the growth on the nonpolar Si substrate and called antiphase domains (APDs) offer a unique way to engineer the second-order properties of the semiconductor compound. Here we demonstrate the fabrication of microdisk resonators at the interface between a gallium-phosphide layer and its silicon substrate. The analysis of the whispering gallery mode quality factors in the devices allows the quantitative assessment of losses induced by a controlled distribution of APDs in the GaP layer and demonstrates the relevance of such a platform for the development of polarity-engineered III-V nonlinear photonic devices on silicon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.