Abstract

The evolution towards Smart Grids (SGs) represents an important opportunity for modernization of the energy industry. It is characterized by a bidirectional flow of information and energy between consumers and suppliers. However, the rapid increase of energy demands in residential areas is becoming a challenging problem. In order to address this issue, Demand-Side Management (DSM) has proven to be an effective solution. In this paper, we propose LOSISH, a price-based Demand Response (DR) system for load scheduling in residential Smart Homes (SHs) that achieves a trade-off between electricity payments and consumer’s discomfort. Our proposed system considers Renewable Energy Sources (RESs), Battery Energy Storage System (BESS) and Plug-in Electric Vehicle (PEV). We formulate our scheduling as a constrained optimization problem and we propose a new hybrid algorithm to solve it. The latter combines two well known heuristic algorithms: Particle Swarm Optimization (PSO) and Binary Particle Swarm Optimization (BPSO). Moreover, we propose a new clustering algorithm based on Machine Learning (ML) to extract consumer’s preferences from a real dataset that contains the historical consumption patterns of his smart appliances. We test our approach on real data traces obtained from a SH and we set up an experiment to evaluate our algorithm on a Raspberry Pi and measure its energy consumption. To prove the effectiveness of our approach, we compare our results with another approach from the literature in terms of electricity bill, Peak-to-Average Ratio (PAR), energy consumption, and execution time. Numerical results show that LOSISH outperforms the other approach in terms of electricity bill (up to 52.92% cheaper), PAR (up to 44% decrease in peak demands), energy consumption (up to 69.44% less consumption), and execution time (up to 63.15% faster).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call