Abstract

The strictly maternal inheritance (SMI) is a pattern of mitochondrial inheritance observed across the whole animal kingdom. However, some interesting exceptions are known for the class Bivalvia, in which several species show an unusual pattern called doubly uniparental inheritance (DUI) whose outcome is a heteroplasmic pool of mtDNA in males. Even if DUI has been studied for long, its molecular basis has not been established yet. The aim of this work is to select classes of proteins known to be involved in the maintenance of SMI and to compare their features in two clam species differing for their mitochondrial inheritance mechanism, that is, the SMI species Ruditapes decussatus and the DUI species Ruditapes philippinarum. Data have been obtained from the transcriptomes of male and female ripe gonads of both species. Our analysis focused on nucleases and polymerases, ubiquitination and ubiquitin-like modifier pathways, and proteins involved in autophagy and mitophagy. For each protein group of interest, transcription bias (male or female), annotation, and mitochondrial targeting (when appropriate) were assessed. We did not find evidence supporting a role of nucleases/polymerases or autophagic machinery in the enforcement of SMI in R. decussatus. On the other hand, ubiquitinating enzymes with the expected features have been retrieved, providing us with two alternative testable models for mitochondrial inheritance mechanisms at the molecular level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call