Abstract

Non-analyticities in the logarithm of the Loschmidt echo, known as dynamical quantum phase transitions [DQPTs], are a recently introduced attempt to classify the myriad of possible phenomena which can occur in far from equilibrium closed quantum systems. In this work, we analytically investigate the Loschmidt echo in nonequilibrium s-wave and topological px+ipy fermionic superfluids. We find that the presence of non-analyticities in the echo is not invariant under global rotations of the superfluid phase. We remedy this deficiency by introducing a more general notion of a grand canonical Loschmidt echo. Overall, our study shows that DQPTs are not a good indicator for the long time dynamics of an interacting system. In particular, there are no DQPTs to tell apart distinct dynamical phases of quenched BCS superconductors. Nevertheless, they can signal a quench induced change in the topology and also keep track of solitons emerging from unstable stationary states of a BCS superconductor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.