Abstract

To provide global service with low latency, the broadband low earth orbits (LEO) satellite constellation based communication systems have become one of the focuses in academic and industry. To allow for wideband access for user links, the feeder link of LEO satellite is correspondingly required to support high throughput data communications. To this end, we propose to apply line-of-sight (LoS) multiple-input multiple-output (MIMO) transmission for the feeder link to achieve spatial multiplexing by optimizing the antenna arrangement. Unlike the LoS MIMO applications for static scenarios, the movement of LEO satellites make it impractical to adjust the optimal antenna separation for all possible satellite positions. To address this issue, we propose to design the antenna placement to maximize the ergodic channel capacity during the visible region of the ground station. We first derive the closed-form probability distribution of the satellite trajectory in visible region. Based on which the ergodic channel capacity can be then calculated numerically. The antenna placement can be further optimized to maximize the ergodic channel capacity. Numerical results verify the derived probability distribution of the satellite trajectory, and show that the proposed LoS MIMO scheme can significantly increase the ergodic channel capacity compared with the existing SISO one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call