Abstract

Despite being known for his pioneering work on chaotic unpredictability, the key discovery at the core of meteorologist Ed Lorenz’s work is the link between space-time calculus and state-space fractal geometry. Indeed, properties of Lorenz’s fractal invariant set relate space-time calculus to deep areas of mathematics such as Gödel’s Incompleteness Theorem. Could such properties also provide new perspectives on deep unsolved issues in fundamental physics? Recent developments in cosmology motivate what is referred to as the ‘cosmological invariant set postulate’: that the universe can be considered a deterministic dynamical system evolving on a causal measure-zero fractal invariant set in its state space. Symbolic representations of are constructed explicitly based on permutation representations of quaternions. The resulting ‘invariant set theory’ provides some new perspectives on determinism and causality in fundamental physics. For example, while the cosmological invariant set appears to have a rich enough structure to allow a description of (quantum) probability, its measure-zero character ensures it is sparse enough to prevent invariant set theory being constrained by the Bell inequality (consistent with a partial violation of the so-called measurement independence postulate). The primacy of geometry as embodied in the proposed theory extends the principles underpinning general relativity. As a result, the physical basis for contemporary programmes which apply standard field quantisation to some putative gravitational lagrangian is questioned. Consistent with Penrose’s suggestion of a deterministic but non-computable theory of fundamental physics, an alternative ‘gravitational theory of the quantum’ is proposed based on the geometry of , with new perspectives on the problem of black-hole information loss and potential observational consequences for the dark universe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call