Abstract

Unique detection of electromagnetic fields and identification of field type and strength as a function of position were used to determine the nature of self-generated fields in a novel experiment with laser-generated plasma bubbles on two sides of a plastic foil. Field-induced deflections of monoenergetic 15-MeV probe protons passing through the two bubbles, measured quantitatively with proton radiography, were combined with Lorentz mapping to provide separate measurements of magnetic and electric fields. The result was absolute identification and measurement of a toroidal magnetic field around each bubble and determination that any electric field component parallel to the foil was below measurement uncertainties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.