Abstract

Basis tensor gauge theory (BTGT) is a vierbein analog reformulation of ordinary gauge theories in which the vierbein field describes the Wilson line. After a brief review of the BTGT, we clarify the Lorentz group representation properties associated with the variables used for its quantization. In particular, we show that starting from an SO(1,3) representation satisfying the Lorentz-invariant U(1,3) matrix constraints, BTGT introduces a Lorentz frame choice to pick the Abelian group manifold generated by the Cartan subalgebra of U(1,3) for the convenience of quantization even though the theory is frame independent. This freedom to choose a frame can be viewed as an additional symmetry of BTGT that was not emphasized before. We then show how an [Formula: see text] permutation symmetry and a parity symmetry of frame fields natural in BTGT can be used to construct renormalizable gauge theories that introduce frame-dependent fields but remain frame independent perturbatively without any explicit reference to the usual gauge field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call