Abstract

We reconsider the role of Lorentz invariance in the dynamical generation of the observed internal symmetries. We argue that, generally, Lorentz invariance can be imposed only in the sense that all Lorentz noninvariant effects caused by the spontaneous breakdown of Lorentz symmetry are physically unobservable. The application of this principle to the most general relativistically invariant Lagrangian, with arbitrary couplings for all the fields involved, leads to the appearance of a symmetry and, what is more, to the massless vector fields gauging this symmetry in both Abelian and non-Abelian cases. In contrast, purely global symmetries are generated only as accidental consequences of the gauge symmetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call