Abstract
A gauge theory of the Lorentz group, based on the different behavior of spinors and vectors under local transformations, is formulated in a flat space-time and the role of the torsion field within the generalization to curved space-time is briefly discussed. The spinor interaction with the new gauge field is then analyzed assuming the time gauge and stationary solutions, in the non-relativistic limit, are treated to generalize the Pauli equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.