Abstract

This paper reports a chip-scale radio frequency Lorentz-force gyrator based on an aluminum scandium nitride (Al0.7Sc0.3N) thin film. The two-port gyrator, which is essentially a lateral overtone bulk acoustic resonator, consists of a planar coil for Lorentz-force transduction and two top-bottom electrode pairs for piezoelectric transduction. The non-reciprocity is generated by the phase transition in the Lorentz-force coupling when an external vertical magnetic field is applied. The Lorentz-force gyrators based on both AlN and Al0.7Sc0.3N thin films demonstrate good non-reciprocity, i.e., the 180° phase difference, at approximately 517 and 388 MHz, respectively. Thanks to larger piezoelectric constants, the Al0.7Sc0.3N gyrator demonstrates easier impedance matching and a wider fractional bandwidth of 6.3% at a magnetic field of 1.65 T compared to 1.3% for an AlN device. Finally, an isolator consisting of the Lorentz-force gyrator and a shunt resistor is demonstrated over 35 dB of isolation and flat unidirectional transmission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.