Abstract

Blazar radiation is dominated by a relativistic jet which can be modeled at first approximation using just two intrinsic parameters - the Lorentz factor $\Gamma$ and the viewing angle $\theta$. Blazar jet observations are often beamed due to relativistic effects, complicating the understanding of these intrinsic properties. The most common way to estimate blazar Lorentz factors needs the estimation of apparent jet speeds and Doppler beaming factors. We present a new and independent method of constructing the blazar Lorentz factor distribution, using the optical fundamental plane of black hole activity. The optical fundamental plane is a plane stretched out by both the supermassive black holes and the X-ray binaries, in the 3D space provided by their [OIII] line luminosity, radio luminosity and black hole mass. We use the intrinsic radio luminosity obtained from the optical fundamental plane to constrain the boosting parameters of the VLBA Imaging and Polarimetry Survey (VIPS) blazar sample. We find a blazar bulk Lorentz factor distribution in the form of a power law as $N(\Gamma) \propto \Gamma^{-2.1 \pm 0.4}$ for the $\Gamma$ range of 1 to 40. We also discuss the viewing angle distribution of the blazars and the dependence of our results on the input parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.