Abstract

Using the helicity-spinor language we explore the non-perturbative constraints that Lorentz symmetry imposes on three-point amplitudes where the asymptotic states can be massive. As it is well known, in the case of only massless states the three-point amplitude is fixed up to a coupling constant by these constraints plus some physical requirements. We find that a similar statement can be made when some of the particles have mass. We derive the generic functional form of the three-point amplitude by virtue of Lorentz symmetry, which displays several functional structures accompanied by arbitrary constants. These constants can be related to the coupling constants of the theory, but in an unambiguous fashion only in the case of one massive particle. Constraints on these constants are obtained by imposing that in the UV limit the massive amplitude matches the massless one. In particular, there is a certain Lorentz frame, which corresponds to projecting all the massive momenta along the same null momentum, where the three-point massive amplitude is fully fixed, and has a universal form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.