Abstract

With the increasing complexity and difficulty of numerical optimization problems in the real world, many efficient meta-heuristic optimization methods have been proposed to solve these problems. The arithmetic optimization algorithm (AOA) design is inspired by the distribution behavior of the main arithmetic operators in mathematics, including multiplication (M), division (D), subtraction (S) and addition (A). In order to improve the global search ability and local development ability of the AOA, the Lorentz triangle search variable step coefficient was proposed based on the broad-spectrum trigonometric functions combined with the Lorentz chaotic mapping strategy, which include a total of 24 search functions in four categories, such as regular trigonometric functions, inverse trigonometric functions, hyperbolic trigonometric functions, and inverse hyperbolic trigonometric functions. The position update was used to improve the convergence speed and accuracy of the algorithm. Through test experiments on benchmark functions and comparison with other well-known meta-heuristic algorithms, the superiority of the proposed improved AOA was proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.