Abstract
We show that the space-time foam model from string/D-brane theory predicts a scenario in which neutrinos can possess linearly energy dependent speed variation, together with an asymmetry between neutrinos and antineutrinos, indicating the possibility of Lorentz and CPT symmetry violation for neutrinos. Such a scenario is supported by a phenomenological conjecture from the possible associations of IceCube ultrahigh-energy neutrino events with the gamma-ray bursts. It is also consistent with the constraints set by the energy-losing decay channels (e.g., e+e− pair emission, or neutrino splitting) upon superluminal neutrino velocities. We argue that the plausible violations of energy-momentum conservation during decay may be responsible for the stable propagation of these neutrinos, and hence for the evasion of relevant constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.