Abstract

Researchers have long wanted the ability to solve the structures of proteins in their natural state—in the complex environment of cells. But they’ve been stuck with methods that require them to study proteins in isolation. Loren Andreas hopes to change that using solid-state nuclear magnetic resonance spectroscopy to better understand biology and potentially open up new drug targets. Andreas’s first big advance came as a graduate student in the labs of the Massachusetts Institute of Technology’s Robert G. Griffin. Using solid-state NMR, Andreas was able to solve the structure of part of influenza A’s M2 protein, a proton channel that goes through the virus’s envelope, or outer coat. That work upended assumptions about the structure of M2. Previously, researchers thought the protein was a tetramer with fourfold symmetry, but it turned out to be a dimer of dimers. The findings have implications both for the mechanism of proton transport and

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call