Abstract

Long range wide area networks (LoRaWANs) have recently received intense scientific, research, and industrial interest. LoRaWANs play a pivotal role in Internet of Things (IoT) applications due to their capability to offer large coverage without sacrificing the energy efficiency and, thus the battery life, of end-devices. Most published contributions assume that LoRaWAN gateways (GWs) are plugged into the energy grid; thus, neglecting the network lifetime constraint due to power storage limitations. However, there are several verticals, including precision agriculture, forest protection, and others, in which it is difficult or even impossible to connect the GW to the power grid or to perform battery replacement at the end-devices. Consequently, maximizing the networks’ energy efficiency is expected to have a crucial impact on maximizing the network lifetime. Motivated by this, as well as the observation that the overall LoRaWAN network energy efficiency is significantly affected by the selected communication protocol, in this paper, we identify and discuss critical aspects and research challenges involved in the design of a LoRaWAN communication protocol, under an energy efficiency perspective. Building upon our findings, research directions towards a novel GreenLoRaWAN communication protocol are given, focusing on achieving energy efficiency, robustness, and scalability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call