Abstract

The existing study shows that safety applications supported by vehicle-to-vehicle (V2V) communications have the potential to address 80% of all road crash issues. IEEE 802.11p is a key enabling technology to support V2V safety applications. To meet the stringent delay and reliability requirements of these applications, rate adaptation (RA) approaches have been proposed to determine the optimal data transmission rate, according to the channel conditions such as packet losses. However, existing RA solutions cannot be directly applied to V2V safety communications in highway scenarios, which exhibit lots of dynamics and severe packet losses. Moreover, physical (PHY)-layer channel fading and medium-access-control (MAC)-layer interference contribute differently to the packet losses and, thus, should be treated separately. To address these issues, in this paper, we propose a LOss differentiation RA (LORA) scheme. LORA can estimate the average packet loss rate (PLR) for each sender and differentiate the fading losses from the interference losses. Extensive evaluation results demonstrate that LORA can provide reliability guarantees for V2V safety applications, as well as a response to environment changes in a real-time manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.