Abstract

Much of the development of lopsided convergence for bifunctions defined on product spaces was in response to motivating applications. A wider class of applications requires an extension that would allow for arbitrary domains, not only product spaces. This leads to an extension of the definition and its implications that include the convergence of solutions and optimal values of a broad class of minsup problems. In the process we relax the definition of lopsided convergence even for the classical situation of product spaces. We now capture applications in optimization under stochastic ambiguity, Generalized Nash games, and many others. We also introduce the lop-distance between bifunctions, which leads to the first quantification of lopsided convergence. This quantification facilitates the study of convergence rates of methods for solving a series of problems including minsup problems, Generalized Nash games, and various equilibrium problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.