Abstract

1. Loperamide has an ability to lower the plasma glucose concentration in streptozotocin (STZ)-induced diabetic rats. In the present study, we investigated the molecular mechanisms by which loperamide regulates plasma glucose concentrations in the absence of insulin. 2. Loperamide, at a dose sufficient (17.6 microg/kg) to activate mu-opioid receptors, significantly decreased plasma glucose levels in STZ-diabetic rats. The mRNA and protein levels of glucose transporter 4 (GLUT-4) in soleus muscle, detected by northern and western blotting, respectively, were increased after repeated intravenous administration of loperamide (17.6 micro g/kg) to STZ-diabetic rats over 3 days. Moreover, similar treatment with loperamide (17.6 microg/kg) for 3 days reversed the elevated mRNA and protein levels of phosphoenolpyruvate carboxykinase (PEPCK) in the liver of STZ-diabetic rats to near the levels seen in normal rats. 3. These results suggest that activation of mu-opioid receptors by loperamide can increase glucose utilization in peripheral tissues and/or reverse the higher gene expression of PEPCK to inhibit hepatic gluconeogenesis, thereby lower plasma glucose in diabetic rats lacking insulin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.