Abstract

A molded‐loose‐powder technique using a small powdered sample (100 mg) was developed for the X‐ray fluorescence analysis of 22 components (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3, V, Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, and Pb) in ancient pottery. This loose powder specimen was prepared by pressing the small powdered sample into a sample holder, formed from a stainless steel disk (48‐mm diameter × 0.8‐mm height) with a hole (11‐mm diameter), by hand. Calibration standards were prepared by homogenizing chemical reagents containing these 22 analytes using the concentration ranges of 166 ancient potteries and three clay materials from Japan. The calibration curves of these benchmark mixtures exhibited a good linearity (correlation coefficient, r = 0.990–1.000), accuracy, and reproducibility compared with those of other synthesized specimens and three reference standards. The lower limits of detection were less than tens of mg kg−1 (e.g., 94 mg kg−1 for Na2O, 11 mg kg−1 for P2O5, 1.1 mg kg−1 for Rb, and 0.9 mg kg−1 for Y). Using the present method, we determined 22 components in two prehistoric potteries from Japan. The advantage of this method is that only a small amount of sample is required, which can be prepared easily and rapidly and reused for other analyses. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call