Abstract

A face of a vertex coloured plane graph is called loose if the number of colours used on its vertices is at least three. The looseness of a plane graph G is the minimum k such that any surjective k-colouring involves a loose face. In this paper we prove that the looseness of a connected plane graph G equals the maximum number of vertex disjoint cycles in the dual graph G* increased by 2. We also show upper bounds on the looseness of graphs based on the number of vertices, the edge connectivity, and the girth of the dual graphs. These bounds improve the result of Negami for the looseness of plane triangulations. We also present infinite classes of graphs where the equalities are attained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.