Abstract

During thermal treatment of carbon materials, unstable edge sites can easily convert to structurally stable loop structures. Hence, in the present work, carbon edges are physically passivated via high-temperature treatment in the presence of boron atoms to accelerate loop formation. The highly accelerated loop formation, along with stacking multi-layers at the carbon edges, is systematically investigated via high resolution transmission electron micro microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy and thermal gravimetric analysis (TGA). The boron-added carbon nanofibers (CNFs) at high temperature exhibit a greatly enhanced electrical conductivity due to the high mobility of boron atoms within the carbon structure. In particular, engineering of the loop structures on the carbon edges can alter the overall electrocatalytic activities of the carbon-based materials, as demonstrated in the reductive conversion of 4-nitrophenol (4-NP) and in the hydrogen evolution reaction (HER). This work not only suggests suitable methods for carbon edge passivation, but also opens up a route towards the advanced design of high-stability carbon materials in various fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.