Abstract
A two-species Lotka–Volterra competition–diffusion model with spatially inhomogeneous reaction terms is investigated. The two species are assumed to be identical except for their interspecific competition coefficients. Viewing their common diffusion rate μ as a parameter, we describe the bifurcation diagram of the steady states, including stability, in terms of two real functions of μ. We also show that the bifurcation diagram can be rather complicated. Namely, given any two positive integers l and b, the interspecific competition coefficients can be chosen such that there exist at least l bifurcating branches of positive stable steady states which connect two semi-trivial steady states of the same type (they vanish at the same component), and at least b other bifurcating branches of positive stable steady states that connect semi-trivial steady states of different types.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.