Abstract
As more and more genetically modified (GM) crops are approved for commercialization and planting, safety issues of GM crops have become hot topics worldwide. For both regulatory and academic purposes, development of rapid, economic and effective on-site detection methods for GM components is indispensible. Up to now, the most effective and sensitive techniques used for GMO detection are based on polymerase chain reaction (PCR). PCR method needs expensive, heavy instruments and gel electrophoresis, therefore, it is commonly used in laboratory test, and unsuitable for on-site detection. Loop-mediated isothermal amplification (LAMP), an isothermal nucleic acid amplification technique, has been extensively used in many areas such as food safety and clinic diagnosis. Advantageous characteristics of LAMP, such as high specificity and sensitivity, simple operation, low cost, eye visualization, particularly free of special equipment, renders it with high potential to be used for GMO on-site detection. In this review, we summarized current status of the application of LAMP in GMO detection, and discussed possible improvements needed for its adaptability regarding to on-site GMO detection. Hopefully, the information present here would facilitate the practical risk assessment of GMO.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.