Abstract

To compare the tensile properties of 4-strand modified Kessler flexor tendon repairs using a looped or single-stranded suture. We evaluated the mechanical properties of 4-strand Kessler zone II core suture repairs using either looped or single-stranded suture in human flexor digitorum profundus and flexor pollicis longus tendons. Forty repairs were performed on tendons from bilateral cadaveric hands: 20 matched tendons were divided into equal groups of 3-0 looped and 3-0 single-strand repairs and 20 additional matched tendons were divided into equal groups of 4-0 looped and 4-0 single-strand repairs. Repaired tendons were tested in uniaxial tension to failure to determine mechanical properties and failure modes. Data were analyzed to determine the effect of repair type (ie, looped vs single-stranded) for each suture caliber (ie, 3-0 and 4-0). Single-strand repairs with 3-0 suture demonstrated a significantly greater maximum load to failure and a significantly higher force at 2-mm gap compared with repairs with looped 3-0 suture. All 8 looped repairs with 3-0 suture failed by suture pullout whereas 7 of 8 repairs with 3-0 single-stranded suture failed by suture breakage. The mechanical properties of looped versus single-stranded repairs with 4-0 caliber suture were not statistically different. Repairs with 4-0 caliber suture failed by suture breakage in 8 of 10 single-strand repairs and failed by suture pullout in 6 of 10 repairs with looped suture. In a time-0 exvivo human cadaveric core suture model, the mechanical properties of a 4-strand repair using 3-0 single-stranded suture were significantly better than the same 4-strand repair performed with looped suture. Four-strand flexor tendon repairs with 3-0 suture are mechanically superior when performed with single-strand suture versus looped suture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.