Abstract

Linear transformations are widely used to vectorize and parallelize loops. A subset of these transformations are unimodular transformations. When a unimodular transformation is used, the exact bounds of the transformed loop nest are easily computed and the steps of the loops are equal to 1. Unimodular loop transformations have been widely used since they permit the implementation of many useful loop transformations. Recently, nonunimodular transformations have been proposed to reduce communication requirements or to use the memory hierarchy efficiently. The methods used for unimodular transformations do not work in the case of nonunimodular transformations, since they do not produce the exact bounds of the transformed loop nest. In this paper, we present a method for nested loop transformation which gives the exact bounds for both unimodular and nonunimodular transformations. The basic idea is to use the Hermite Normal Form (HNF) of the transformation matrix. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.