Abstract
AbstractIn this paper, we describe transformation recipes, which provide a high-level interface to the code transformation and code generation capability of a compiler. These recipes can be generated by compiler decision algorithms or savvy software developers. This interface is part of an auto-tuning framework that explores a set of different implementations of the same computation and automatically selects the best-performing implementation. Along with the original computation, a transformation recipe specifies a range of implementations of the computation resulting from composing a set of high-level code transformations. In our system, an underlying polyhedral framework coupled with transformation algorithms takes this set of transformations, composes them and automatically generates correct code. We first describe an abstract interface for transformation recipes, which we propose to facilitate interoperability with other transformation frameworks. We then focus on the specific transformation recipe interface used in our compiler and present performance results on its application to kernel and library tuning and tuning of key computations in high-end applications. We also show how this framework can be used to generate and auto-tune parallel OpenMP or CUDA code from a high-level specification.KeywordsTransformation RecipeMemory HierarchyLanguage ConstructCode TransformationLoop TransformationThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.