Abstract

In this work, we consider excited many-body mean-field states of bosons in a double-well optical lattice by investigating stationary Bloch solutions to the non-linear equations of motion. We show that, for any positive interaction strength, a loop structure emerges at the edge of the band structure whose existence is entirely due to interactions. This can be contrasted to the case of a conventional optical (Bravais) lattice where a loop appears only above a critical repulsive interaction strength. Motivated by the possibility of realizing such non-linear Bloch states experimentally, we analyze the collective excitations about these non-linear stationary states and thereby establish conditions for the system's energetic and dynamical stability. We find that there are regimes that are dynamically stable and thus apt to be realized experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.