Abstract

Loop Quantum Gravity (L.Q.G.) is one of the two most promising tentative theory for a quantum description of gravity. When applied to the entire universe, the so‐called Loop Quantum Cosmology (L.Q.C.) framework offers microscopical models of the very early stages of the cosmological history, potentially solving the initial singularity problem via bouncing solutions or setting the universe in the appropriate initial conditions for inflation to start, via a phase of super‐inflation. More interestingly, L.Q.C. could leave a footprint on cosmological observables such as the Cosmic Microwave Background (CMB) anisotropies. Focusing on the modified dispersion relation when holonomy and inverse‐volume corrections arising from the L.Q.C. framework are considered, it is shown that primordial gravity waves generated during inflation are affected by quantum corrections. Depending on the type of corrections, the primordial tensor power spectrum is either suppressed or boosted at large length scales, and strongly departs from the power‐law behavior expected in the standard scenario.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.