Abstract

Taking advantage of the high temporal and spatial resolution observations of the Solar Dynamics Observatory, we present an extreme ultraviolet (EUV) wave associated with a micro-sigmoid eruption, which took place on 2012 October 4. The micro-sigmoid underwent a typical sigmoid-to-arcade evolution via tether-cutting reconnection, accompanied by a micro-flare, a filament eruption. The twin coronal dimmings at the footpoints of the sigmoid indicate the existence of the associated micro-coronal mass ejection that likely triggered a small-scale EUV wave. The wave onset was nearly simultaneous with the start of the eruption and the associated flare. The wave had a nearly circular front, and propagated at initial velocities of 300–360 km s−1. Because the sigmoid was located in the non-quiet region, the generated wave interacted with the ambient loops, and triggered transverse loop oscillations, resulting in many loop-shaped dimmings. Moreover, the interaction between the wave and one large loop led not only to the oscillation but also to the downward plasma flow along the loop, inducing loop footpoints to brighten. Another small loop was nearly intact after the wave passed. In some directions, the wave was refracted by the loops, and the refracted speeds increased, decreased, or vanished in different directions. All results provide evidence that the EUV wave was a fast-mode magnetohydrodynamic wave.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.